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We numerically investigate the effect of Klein tunneling on the Aharonov-Bohm oscillations in graphene
rings using a tight-binding model with nearest-neighbor couplings. In order to introduce Klein tunneling into
the system, we apply an electrostatic potential to one of the arms of the ring, such that this arm together with
the two adjacent leads form either a nn�n or npn junction �n ,n�: conduction band transport and p: valence band
transport�. The former case corresponds to normal tunneling and the latter case to Klein tunneling. We find that
the transmission properties strongly depend on the smoothness of the pn interfaces. In particular, for sharp
junctions the amplitude profile is symmetric around the charge neutrality point in the gated arm, whereas for
smooth junctions the Aharonov-Bohm oscillations are strongly suppressed in the Klein tunneling as compared
to the normal tunneling regime.
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I. INTRODUCTION

It is by now common knowledge that graphene has pecu-
liar transport properties making the material an interesting
candidate for future applications �for recent reviews on
graphene see Refs. 1–3�. Ballistic transport in graphene has
been coined pseudodiffusive at the Dirac point4–6 because it
is carried by evanescent modes. This gives rise to transport
properties that resemble diffusive transport in other
materials—a prediction that has been experimentally con-
firmed in shot noise measurements.7,8 Phase-coherent trans-
port in disordered graphene is not less interesting than bal-
listic transport in clean graphene. The reason is that the
honeycomb lattice of graphene in combination with different
types of scattering mechanisms yields rather rich localization
physics.9 Depending on the magnitude of the so-called inter-
valley scattering, one can either see weak antilocalization or
weak localization.10 A recent experiment on quantum inter-
ference in graphene has confirmed this prediction by measur-
ing the same sample at different carrier densities and tem-
peratures which allows us to see the transition from
localization to antilocalization.11

Therefore, the combination of ballistic transport at �or
close to� the Dirac point with quantum interference effects
suggests itself to contain interesting physics. This is our mo-
tivation to study how the Aharonov-Bohm effect12 in
graphene rings is affected by tuning one of the arms of the
ring with an external gate through the Dirac point, see Fig. 1
for a schematic. We will show below that such a setup allows
for a clear graphene-specific signature in Aharonov-Bohm
measurements which seems to be readily observable. Its
physical origin is the quantum interference of normal tunnel-
ing as well as Klein tunneling trajectories through the two
arms of the ring.

Previous theoretical work on graphene ring structures in-
cludes the investigation of the electronic properties of closed
single-layer13 and bilayer14 rings pierced by a magnetic flux
as well as transport studies of the Aharonov-Bohm effect in
clean and disordered graphene away from the Dirac
point.15,16 It should be mentioned that none of the graphene-

specific predictions of Refs. 13–16 have been observed in
subsequent Aharonov-Bohm oscillation measurements.17,18

Recently, Katsnelson has studied the Aharonov-Bohm effect
in undoped graphene �at the Dirac point� and made
graphene-specific predictions that are complementary to ours
and might be observable in future experiments.19

This paper is organized as follows. In Sec. II, we intro-
duce the tight-binding model that we use for the transport
analysis. This section includes a brief description of the re-
cursive Green’s function formalism with an emphasis on the
peculiarities due to graphene’s honeycomb lattice. Subse-
quently, in Sec. III, we discuss our results in the different
transport regions which show the interplay of the Aharonov-
Bohm effect and Klein tunneling in phase-coherent graphene
nanostructures. Finally, we conclude in Sec. IV. Some tech-
nical details are discussed in Appendixes A and B.

FIG. 1. �Color online� Schematic of the graphene ring structure
�left� and the y-dependence of the on-site gate potential V �right�
that is applied to the lattice sites on the lower arm of the ring. V is
nonzero only within the blue box drawn around the lower arm of
the ring, and exhibits either a smooth �black solid line� or sharp �red
dashed line� profile along y direction while being constant along x
direction. The width of the arms of the ring is chosen equal to the
width w of the leads. The shaded area indicates the region of non-
vanishing homogeneous magnetic field pointing out of plane. Dif-
ferent edge disorder configurations are realized by randomly remov-
ing sites within the two regions of width � between dashed and
solid circles.
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II. MODEL

Our calculation starts with the usual tight-binding Hamil-
tonian for graphene

H = �
i

Vi�i��i� + �
i,j

�ij�i��j� , �1�

where the second sum runs over nearest neighbors and Vi
=V�ri� is an on-site potential that may depend on position.
The graphene hopping integral �0�3 eV picks up a Peierls
phase in the presence of a magnetic field yielding for the
nearest-neighbor coupling element the expression

�ij = − �0 exp�2�i

�0
	

ri

rj

A�r�dr
 , �2�

where the line integral is taken along the straight path be-
tween sites i and j. �0=h /e is the magnetic flux quantum.

The system under consideration is a ring-shaped structure
cut out of a graphene sheet, which is attached to two crys-
talline leads also modeled using the graphene lattice struc-
ture �see Fig. 1�. The structure is subject to a homogeneous
magnetic field B�r�= �0,0 ,B� resulting from a vector poten-
tial A�r�= �−By ,0 ,0� as well as a gate electrode potential Vg
located on top of the lower arm of the ring. The smoothness
of the potential interface is controlled via the smoothing
width ws measured from the lower edges of the leads,

V = 0 for y � − w/2,

V = Vg for y � − w/2 − ws,

0 � V � Vg otherwise,

taking the origin of coordinates at the center of the ring. In
our simulations, we used a cosine-shaped smoothing profile
and chose values ws=0¯R−3w /2.

For a Fermi energy E	0, together with the adjacent leads
this lower arm forms either a nn�n or npn junction for Vg
�E and Vg	E, respectively �see Fig. 2 for a schematic�.
Note that the setup exhibits a flat potential profile for trajec-
tories along the upper ring arm, i.e., a nnn junction, since
there is no gate potential applied. This enables a rather large
transmission through the ring even when the lower ring arm
is tuned toward the Dirac point since transport through the

upper arm always takes places at an energy distance E away
from the charge neutrality point.

We derive the transmission function through the ring from
the scattering S matrix using the Landauer-Büttiker formal-
ism for elastic transport at zero temperature assuming com-
plete phase coherence. The semi-infinite left and right leads
are described through their respective real-space surface
Green’s functions �SGFs� gL and gR. The coupling of the
leads via the Hamiltonian H describing the ring structure is
expressed through Dyson’s equation. In order to obtain the
effective coupling between the leads, we apply a recursive
Green’s function �RGF� technique. The S matrix is then ob-
tained from the system’s Green’s function using the Fisher-
Lee relation.20

A. Calculation of the lead’s surface Green’s function

For the calculation of the lead’s surface Green’s functions,
we essentially follow Ref. 21. An isolated infinite lead is
described as quasi-one-dimensional periodic arrangement of
identical unit cells. Each unit cell is described by an intracell
matrix H0 whose dimension equals the number M of atomic
sites within the unit cell. Neighboring unit cells are coupled
via an intercell matrix H1, such that for each cell a
Schrödinger equation of the form

H1
†
z−1 + H0
z + H1
z+1 = E
z, z � Z �3�

holds, where 
z is a M-dimensional vector describing the
atomic sites within a particular unit cell. Since we consider
the zero temperature regime, transport takes place at the
Fermi energy E, measured relative to the charge neutrality
point in the leads. The approach outlined in Ref. 21 then
requires the inversion of the intercell matrix H1. However
this matrix is singular in the case of a graphene lattice. To
overcome this problem, we will use an effective description
for the leads as outlined in Appendix A. This description is
based on the fact, that in many cases not all of the atomic
sites contained in one cell couple to the adjacent cell. One
can then conveniently divide the unit cells into even- and
odd-indexed subcells and eliminate the latter from the calcu-
lation by writing down the effective coupling between even-
indexed subcells. This yields an expression of the form

H̃1
†
̃z−1 + H̃0
̃z + H̃1
̃z+1 = E
̃z �4�

with invertible coupling matrices H̃1. As will be shown later,
this effective description also has the additional benefit of
increased performance of the recursive Green’s function
scheme. Note that since the approach does not depend on
details of the matrices H0 and H1 it may also be applied to
other lattice structures that exhibit noninvertible coupling
matrices or that enable a potential performance gain.

The isolated leads’ SGFs gL and gR are thus obtained ac-
cording to expressions �2.16� and �2.17� of Ref. 21, respec-
tively, using the effective description �Eq. �4�� for the leads.

B. Connecting leads and conductor

In order to obtain the S matrix, we need to compute the
Green’s function

FIG. 2. Schematic of the influence of the potential profile intro-
duced by Vg on the spectrum of the lower arm of the ring. The
left-hand side shows the normal tunneling case �nn�n junction� and
the right-hand side the Klein tunneling case �npn junction�. The
location of the van Hove singularities at ��0 is also schematically
depicted.
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G = �G11 G12

G21 G22

 = � g̃L g̃LR

g̃RL g̃R

 , �5�

describing the effective coupling between the surface sites of
the two leads. To this end, we apply a variant of the com-
monly used RGF scheme.22–25 As described in Appendix B,
in an effective description, the leads have to couple to the
conductor through an additional contact slice, which has to
be taken into account in contrast to conventional RGF algo-
rithms.

Similar to the leads, the sample itself is also divided into
slices. The width �x of the slices is chosen as small as pos-
sible, since the algorithm scales only linear with the length of
the sample �along x direction� but up to third power with the
width �along y direction�. We therefore choose �x=ax /2 for
zigzag leads and �x=ax /4 for armchair leads, where ax is the
lattice constant of the honeycomb lattice along the x direc-
tion, which is ax=a0

3 in the zigzag case and ax=3a0 in the
armchair case, a0=0.142 nm being the nearest-neighbor dis-
tance in graphene.

The applied RGF procedure then has the following struc-
ture:

�1� Connect the contact slices to the initially isolated
leads.

�2� Connect to slice 1 of the conductor.
�3� Set n=1.
�4� Connect to slice n+1 of the conductor and eliminate

slice n from the description.
�5� Increase n by one and repeat the previous step until all

slices are connected.
In each step it is sufficient to update the contact slice

Green’s functions. The Green’s function �5� of the fully
coupled leads is updated once when all slices are
connected.30 The scheme of a particular step in the recursion
is as follows: Interpreting the coupling to slice n as pertur-
bation to the system of coupled slices up to slice n−1, the
Green’s function describing the coupled system

g�n� � � gC�n� gCX�n� gCD�n�
gXC�n� gX�n� gXD�n�
gDC�n� gDX�n� gD�n�

� �6�

is obtained from the unperturbed Green’s function

g0�n� � � gC�n − 1� gCD�n − 1� 0

gDC�n − 1� gD�n − 1� 0

0 0 �E − H�n��−1� �7�

and the coupling matrix �the perturbation�

U � � 0 0 T0,n

0 0 Tn−1,n

�T0,n�† �Tn−1,n�† 0
� �8�

via Dyson’s equation

g�n� = g0�n� + g0�n�Ug�n� . �9�

Here, the index C refers to the contact slices, whereas the
index D refers to the last connected slice of the sample. H�n�

is the layer-local Hamiltonian of slice n of the sample, and

the matrices Tm,n describe the coupling of the contact slices
and slice n−1 to slice n of the sample. For a simple two-
terminal setup as we consider here, T0,n is nonzero only for
n� �1,N�, N being the total number of slices of the sample.

Note that the matrix elements containing an index X in
Eq. �6� do not have to be calculated since they do not appear
in the next step of the recursion. Further note that we do not
need to add an inconvenient infinitesimal imaginary part to
the energy in expression �7� since it would anyway be ab-
sorbed by finite imaginary terms introduced by the fact that
we deal with an open quantum system.

C. Calculation of the scattering matrix

The linear conductance of the system is obtained using
the Landauer formula

G = G0 Tr�t†t� , �10�

where G0�2e2 /h. The factor 2 accounts for spin degeneracy
and t is the transmission matrix element of the scattering
matrix

S = �S11 S12

S21 S22

 = �r t�

t r�

 , �11�

which itself is a matrix whose elements are the transmission
amplitudes for scattering between the different transverse
modes in the two leads. The S matrix can be written in terms
of the Green’s function Gij in Eq. �5� by means of the Fisher-
Lee relation20

�Sij�hl = ̃
h̄

†�− �ij + GijV�l
vh/vl. �12�

In the latter equation, the transverse eigenvectors l of in-
moving states in lead j and the duals ̃h

† of the out-moving
states in lead i as well as the corresponding group velocities
vh,l and the matrix V are defined and calculated as described
in Ref. 21.

III. RESULTS

In the following we present transmission properties for a
ring with R /a0=300 and w /a0=60. Edge disorder is applied
to the ring by randomly removing sites within a width � from
the inner and outer edges of the ring, respectively �see Fig.
1�. We choose � /a0=1.5 in order to keep the edge of the ring
as smooth as possible while still allowing for different edge
disorder configurations. As depicted in Fig. 2, Fermi energy
E� �0, . . . ,�0� and gate potential Vg� �0, . . . ,2E� are chosen
such that transport always takes place in between the van
Hove singularities located at E= ��0 where the density of
states diverges in the tight-binding model of graphene.

In Fig. 3, we plot the magnetoconductance at Fermi en-
ergy E /�0=0.5 and zero gate voltage �Vg=0� for a particular
ring realization, showing pronounced Aharonov-Bohm oscil-
lations on top of a low frequency background. The back-
ground signal results from universal conductance fluctua-
tions �UCFs� which is typical for phase-coherent mesoscopic
devices. The behavior is in agreement with the observations
made in Ref. 16, where the authors investigate an even wider
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magnetic field range up to the quantum Hall regime. In Fig.
4, we also show the corresponding frequency spectrum ob-
tained from a Fourier transform of the magnetoconductance.
The contributions to the Aharonov-Bohm oscillations are

centered around ��Ba0
2e /h�−1�2.3�105. Using R̃2��B

=h /e, this frequency corresponds to a mean radius R̃ /a0
�270 of interfering electron trajectories, which perfectly lies
within the boundaries of the ring.

In Fig. 5, we show the same plot for E /�0=0.1. The os-
cillations diminish at Ba0

2e /h�6�10−4. This field strength
marks the onset of the quantum Hall regime, where the cy-
clotron diameter becomes comparable to the width of the
arms of the ring; an estimate of the graphene cyclotron di-
ameter dc=2E /vFeB, taking the Fermi velocity at the Dirac
point in graphene, vF=3��0a0 /h, yields dc /a0�40, a value
of same order of magnitude as the width w /a0=60.

By applying a gate voltage Vg	0 to one of the ring arms,
the magnitude of the Aharonov-Bohm oscillations may be
modified. A convenient measure of the oscillation magnitude

is the root mean square �RMS� amplitude of the signal. Prior
to the RMS analysis, the UCF background has to be removed
from the signal. This is achieved by applying a high pass
frequency filter to the Fourier transform of the magnetocon-
ductance data, as indicated in Fig. 4. The retained, unbiased
signal is squared, and the root of the average over the
squared signal is defined as the RMS amplitude �GRMS.

In Fig. 6 we show the dependence of the RMS oscillation
amplitude �GRMS on the gate voltage Vg for different
smoothing widths ws �see Fig. 1� at energy E /�0=0.5, where
the average is taken over the full range B=0¯10−3�0 /a0

2.
Increasing the gate voltage from zero toward the neutrality
point Vg=E not only leads to increased potential scattering
but also to a reduction in the number of accessible propagat-
ing states in the lower arm of the ring. As can be seen in Fig.
6, the oscillation amplitude diminishes and reaches a mini-

2 4 6 8 10

3.0

3.4

3.8

FIG. 3. �Color online� Magnetoconductance of a ring with
R /a0=300, w /a0=60 at energy E /�0=0.5 and zero gate voltage,
showing clear Aharonov-Bohm oscillations on top of a background
due to universal conductance fluctuations.

0 1 2 3 4 5
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0.6

0.8

1.0

FIG. 4. �Color online� Frequency spectrum corresponding to

Fig. 3, obtained from the Fourier transform G̃ of the magnetocon-
ductance G. Besides the low frequency background and the funda-
mental oscillation component, the second harmonic is also slightly
visible in the spectrum. The dashed line indicates the frequency
limit of the high pass frequency filter used for background
subtraction.
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FIG. 5. �Color online� Magnetoconductance of a ring with
R /a0=300, w /a0=60 at energy E /�0=0.1 and zero gate voltage,
showing the onset of the quantum Hall regime. Note: the conduc-
tance is still finite near zero magnetic field, which is not visible on
this scale.
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FIG. 6. �Color online� RMS analysis for the setup used in Fig. 3
for different smoothing widths ws /a0� �0,21,52.5,105,210�. Each
data point results from an average over five realizations of edge
disorder. The corresponding standard deviations lie between
0.005G0 and 0.015G0 but are suppressed for better visibility. For
better clarity, the spectrum schematics �see Fig. 2� are also included.
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mum value at the neutrality point. Note that since the trans-
mission through the upper ring arm is not at all affected by a
gate potential, the overall conductance itself is only slightly
changed to fluctuate around 2.5G0 �see Fig. 7� as compared
to values around 3.4G0 in the case of zero gate potential on
the lower ring arm �see Fig. 3�.

For Vg�E, the decay of the RMS amplitude toward the
neutrality point does not depend on the details of the gate
potential interface. However, in the regime of Klein tunnel-
ing, Vg	E, the oscillation behavior strongly depends on the
smoothness of the gate potential. In case of a smooth poten-
tial, the partial waves in the lower arm have to tunnel
through a finite region of low density of states, where V
�E �see Fig. 1�, in order to interfere with the partial waves
traversing the upper arm. The lower arm becomes increas-
ingly penetrable as this region gets narrower, until it gets
transparent in case of a sharp potential. This reflects the
usual behavior of Klein tunneling phenomena, where the
probability for tunneling through a pn junction depends on
the smoothness of the pn interface.2,26

The described behavior of the RMS amplitude is robust
over the whole energy range under consideration, except for
an increasing uncertainty at lower values for the Fermi en-
ergy. Although all results are presented for zigzag boundary
conditions in the leads, the effects are independent of a
change of orientation of the graphene lattice to armchair
boundaries in the leads.

Before we conclude, we mention here an additional ob-
servation concerning the dependence of the magnitude of the
Aharonov-Bohm oscillations on the magnetic field strength
B, when the lower arm of the ring is tuned near the neutrality
point �see Fig. 7�. It seems that in this regime the oscillation

magnitude is in general significantly lower for low field
strength, compared to the oscillations at higher field strength.
This is indeed the case for most of the ring realizations we
investigated, though not for all of them �see Fig. 7�d��. The
reason for such a behavior is so far not understood. Since the
increase in oscillation magnitude cannot be related to any
particular length scale a connection to the quantum Hall ef-
fect seems unlikely.

IV. CONCLUSIONS

In summary, we have numerically analyzed transport
through graphene ring structures in the presence of a perpen-
dicular magnetic field based on the recursive Green’s func-
tion formalism. In order to understand the physics of the
interplay of the Aharonov-Bohm effect and Klein tunneling
in graphene, we have looked at the influence of a local gate
over one of the arms of the ring on magnetotransport. By
varying the gate voltage, we have been able to tune this arm
from the n-type to the p-type transport regime via the Dirac
point. The analysis of the root mean square amplitude of the
Aharonov-Bohm oscillations clearly shows that the p-type
signal is smaller for smooth pn junctions in the ring arm and
can recover the full n-type value only for very sharp
pn-junctions. Our predictions nicely complement the analy-
sis of Ref. 19 where both arms of the ring are assumed to be
tuned to the charge neutrality point. This might lead to the
first observation of the Aharonov-Bohm effect caused by
transport through evanescent modes or a combination of
propagating modes in one arm and evanescent modes in the
other arm of the ring.
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2.5 (d)

FIG. 7. �Color online� Magnetoconductance of a ring with R /a0=300, w /a0=60 tuned close to the neutrality point in the lower arm with
a smooth potential interface �ws /a0=210�. Plots �a�–�d� constitute a representative selection and are obtained by variation in the microscopic
edge disorder configuration �which is always chosen randomly� for values Vg /E=1.00�0.01.
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APPENDIX A: EFFECTIVE DESCRIPTION OF INFINITE
LEADS

The leads may be described in an effective manner if
some of the atomic sites contained in cell z do not couple to
the adjacent cell z+1. One can then conveniently divide the
unit cell into two subcells according to

H0 � �h1 t10

t10
† h0


, H1 � � 0 0

t01 0

 �A1�

resulting in a double-periodic structure as shown in Fig. 8,
where h0 only describes atomic sites that directly couple to

the next cell. Writing 
z= �
̃z� , 
̃z�T then yields the effective
description of the lead �Eq. �4�� where

H̃1 � t01�E − h1�−1t10,

H̃0 � �10 + h0 + �01,

�10 � t10
† �E − h1�−1t10,

�01 � t01�E − h1�−1t01
† . �A2�

Note that simple single-periodic structures are included in
the description via h0=h1 , t01= t10.

In the case of a graphene lead with zigzag edges in zero
magnetic field, the nonvanishing matrix elements of the

�M /2�M /2� matrices t01, t10 and hk ,k� �0,1� may be writ-
ten in a compact form,

�hk�ii = V0,

�hk�2i+k−1,2i+k = − �0 = �hk�2i+k,2i+k−1,

�t01�ii = − �0 = �t10�ii, �A3�

where we assumed �0�R and a constant on-site matrix ele-
ment V0�R. Of course, the roles of h0 and h1 are inter-
changeable, dependent on the details of the lead’s surface.

Obviously, the effective coupling matrix H̃1=�0
2�E−h1�−1

is invertible, in contrast to the original �M �M� coupling
matrix H1 in the noneffective description, which is clearly

noninvertible. Additionally, the size M̃ of the matrices de-
scribing the effective lead is smaller by a factor of 2 com-
pared to the original description, yielding increased perfor-
mance, since the computational effort of the applied RGF

scheme roughly scales as O�M̃3�. The performance gain is
even larger in the case of graphene leads with armchair
edges, since then only 1/4 of the atomic sites within a par-
ticular unit cell couple to the next cell. The derivation is
similar to the zigzag case and will not be repeated here.

One point to note is that H̃1 is not well defined for energy
values matching the eigenvalues of h1, E=V0, V0��0. E
=V0 corresponds to the charge neutrality point in graphene,
where the density of states vanishes and hence there are no
propagating modes in the lead that may contribute to the
current. The singularity at E=V0��0 corresponds to the van
Hove singularity in graphene where the density of states di-
verges.

For a more formal treatment of this regularization proce-
dure see Refs. 27 and 28. The subdivision of the graphene
lead’s unit cell as depicted in Fig. 8 has also been previously
used in Ref. 29.

APPENDIX B: THE LEAD—SAMPLE INTERFACE

For a semi-infinite lead that terminates at z=0 �see Fig. 9�
such that the wave function on the surface of the lead is

described by 
̃0 in the effective description �Eq. �4��, we
have to account for the boundary conditions. For a left lead,
Eq. �4� still holds for z�0 and we additionally have the
equations

E
̃0 = t10
† 
̃0� + h0
̃0 + T
S, �B1�

1 1

2 2

3 3

4 4

5
5

6
6

FIG. 8. Division of a zigzag �left� and armchair �right� lead’s
unit cell. In the zigzag case, the first of the two slices in which the
unit cell is divided is described by h1, and the second slice that
contains those sites which couple to the next unit cell to the right is
described by h0. Analogously, in the armchair case, the first three
slices of a unit cell are described by h1, whereas only the fourth
slice is described by h0.

:

FIG. 9. Comparison of �a� actual and �b� effective leads, to-
gether with their coupling to a scatterer HS. Effective leads couple
to the scatterer through an additional contact slice, described by HC.
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E
S = T†
̃0 + HS
S, �B2�

where 
S and HS describe the part of the sample that couples
to the lead, and T accounts for this coupling. By eliminating


̃0� as we have done before, Eq. �B1� may be replaced by

E
̃0 = H̃1
†
̃−2 + HC
̃0 + T
S, �B3�

where HC�h0+�10 describes a contact slice, through which
the coupling of the lead to the sample takes place in the
effective description, as shown schematically in Fig. 9.
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